Flexible subunit stoichiometry of functional human P2X2/3 heteromeric receptors
نویسندگان
چکیده
منابع مشابه
Manipulation of Subunit Stoichiometry in Heteromeric Membrane Proteins.
The ability of oligomeric membrane proteins to assemble in different functional ratios of subunits is a common feature across many systems. Recombinant expression of hetero-oligomeric proteins with defined stoichiometries facilitates detailed structural and functional analyses, but remains a major challenge. Here we present two methods for overcoming this challenge: one for rapid virus titratio...
متن کاملHeteromeric AMPA Receptors Assemble with a Preferred Subunit Stoichiometry and Spatial Arrangement
AMPA receptors are thought to be a tetrameric assembly of the subunits GluR1-4. We have examined whether two coexpressed subunits (GluR1/2) combine at random to form channels, or preferentially assemble with a specific stoichiometry and spatial configuration. The subunits carried markers controlling ion permeation and desensitization, and these properties were monitored as a function of relativ...
متن کاملSubunit-specific desensitization of heteromeric kainate receptors.
Kainate receptor subunits can form functional channels as homomers of GluK1, GluK2 or GluK3, or as heteromeric combinations with each other or incorporating GluK4 or GluK5 subunits. However, GluK4 and GluK5 cannot form functional channels by themselves. Incorporation of GluK4 or GluK5 into a heteromeric complex increases glutamate apparent affinity and also enables receptor activation by the ag...
متن کاملStoichiometry of δ subunit containing GABAA receptors
BACKGROUND AND PURPOSE Although the stoichiometry of the major synaptic αβγ subunit-containing GABAA receptors has consensus support for 2α:2β:1γ, a clear view of the stoichiometry of extrasynaptic receptors containing δ subunits has remained elusive. Here we examine the subunit stoichiometry of recombinant α4β3δ receptors using a reporter mutation and a functional electrophysiological approach...
متن کاملEvidence for functional P2X4/P2X7 heteromeric receptors.
The cytolytic ionotropic ATP receptor P2X7 has several important roles in immune cell regulation, such as cytokine release, apoptosis, and microbial killing. Although P2X7 receptors are frequently coexpressed with another subtype of P2X receptor, P2X4, they are believed not to form heteromeric assemblies but to function only as homomers. Both receptors play a role in neuropathic pain; therefore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neuropharmacology
سال: 2015
ISSN: 0028-3908
DOI: 10.1016/j.neuropharm.2015.07.008